Unlocking the Potential of Pr³⁺-Doped Borates in the field of Visible to UVC upconversion

Patrycja Zdeb#, Nadiia Rebrova, and Przemysław J. Dereń

Institute of Low Temperature and Structure Research Polish Academy of Science, Okólna Street 2, 50-422 Wrocław, Poland

The luminophores emitting ultraviolet C (UVC) radiation are intensively studied as a replacement for mercury lamps in germicidal applications or as nanoscintilators in alternative X-ray therapy[1]. Praseodymium (Pr)-doped inorganic matrices stand out as promising candidates for this purpose, thanks to their broad and intense emission bands in the 220–280 nm range corresponding to 4f5d \rightarrow 4f transitions. However, the fundamental practical limitation of these materials is excitation in the ultraviolet (i.e., in the range 120–200 nm), which leads to their solarization. Since the excitation of a host in the visible never produces such defects, we are looking for new matrices that, doped with Pr³⁺, can transform visible light into UVC radiation.

The crucial issue in achieving a UVC phosphor lies in the energy of Pr³⁺ 5d levels, a parameter heavily influenced by the composition and crystal structure of the host lattice. These factors impact the crystal field splitting and centroid shift of the 5d levels [2,3]. By carefully selecting the appropriate host for activator ions, it becomes possible to design phosphor with the desired optical properties.

In this study, we introduce a newly obtained phosphor based on a Pr^{3+} -doped borates host. We present its synthesis and optical characterization, with a particular focus on its performance in the UV range. Notably, we observe intense visible-to-UVC upconversion luminescence under 444 nm laser excitation, which we compare to other well-known Vis-to-UVC upconverters. Interestingly, the relative intensity in the 220 – 280 nm range was higher for our material compared to the Y₂SiO₅ host. These findings highlight the potential of Pr^{3+} -doped borates for germicidal applications, particularly in the creation of self-cleaning surfaces.

This work was supported by The National Science Centre (NCN) under the OPUS 21 project, grant no. UMO-2021/41/B/ST5/03792, which is gratefully acknowledged.

^[1] Espinoza S.; Müller M.; Jenneboer H.; Peulen L.; Bradley T.; Purschke M.; Haase M.; Rahmanzadeh R.; Jüstel T. (2019) Part. Part. Syst. Charact., 36, 1900280.

^[2] Dorenbos P. (2000) J. Lumin, 91, 155-176.

^[3] Dorenbos P. (2000) Phys. Rev. B, 62, 15640-15649.