Optical and EPR spectroscopy of the Li₂B₄O₇:Cu,Eu and Li₂B₄O₇:Mn,Sm glasses (the review)

B. V. Padlyak^{1,2#}, I. I. Kindrat¹, A. Drzewiecki¹, V. T. Adamiv², I. M. Teslyuk²

¹University of Zielona Góra, Institute of Physics, 4a Szafrana Str., 65-516 Zielona Góra, Poland ²Ivan Franko National University of Lviv, Vlokh Institute of Physical Optics, 23 Dragomanov Str., 79005 Lviv, Ukraine

The Li₂B₄O₇:Cu,Eu and Li₂B₄O₇:Mn,Sm glasses containing 1.0 mol.% CuO and Eu₂O₃ as well as 1.0 mol.% MnO₂ and Sm₂O₃, respectively were obtained and studied in details by XRD, EPR, optical absorption, and photoluminescence methods [1,2]. The studied glasses of high optical quality were obtained by high temperature melting technique. Parameters of the local structure (interatomic distances and coordination numbers) of the studied glasses were derived from XRD data analysis. The EPR and optical spectroscopy show that the Cu impurity is incorporated into the Li₂B₄O₇ glass network as Cu²⁺ (3*d*⁹) and Cu⁺ (3*d*¹⁰) ions [1]. The Cu²⁺ ions in Li₂B₄O₇:Cu,Eu glass show characteristic EPR and optical absorption spectra. Spin Hamiltonian parameters of the Cu²⁺ EPR spectrum were determined. Optical band gap and Urbach energy of the Li₂B₄O₇:Cu,Eu glasses were evaluated. Photoluminescence spectra of the Li₂B₄O₇:Cu,Eu glass reveal broad blue emission band of the Cu⁺ (3*d*⁹4*s*¹ \rightarrow 3*d*¹⁰ transition) and narrow emission bands of the Eu³⁺ (4*f*⁶) ions (⁵D₀ \rightarrow ⁷F_J (J = 0 - 4)) transitions with characteristic decay kinetics. Energy transfer processes Eu³⁺ \rightarrow Cu⁺, Cu²⁺ and Cu⁺ \rightarrow Eu³⁺ in Li₂B₄O₇:Cu,Eu glass are considered.

The EPR and optical spectroscopy show the presence of $Mn^{2+}(3d^5)$ and $Mn^{3+}(3d^4)$ impurity ions in the Li₂B₄O₇:Mn,Sm glass [2]. By EPR spectroscopy in the studied glass were identified three types of Mn^{2+} centres: single Mn^{2+} (1) centres in the strongly distorted sites; single Mn^{2+} (2) centres in the sites with almost cubic symmetry; Mn^{2+} pairs and small clusters coupled by magnetic dipolar and exchange interactions. The Mn^{2+} EPR spectra parameters in the Li₂B₄O₇:Mn,Sm glass have been determined at T = 295 K. Optical absorption spectrum of the Li₂B₄O₇:Mn,Sm glass contains a very broad intense band peaked at 467 nm belonging to the ⁵E_g(D) \rightarrow ⁵T_{2g}(D) transition of Mn³⁺ ions and several weak narrow lines corresponding to the ⁶H_{5/2} \rightarrow ⁶P_{3/2}, ⁶H_{5/2} \rightarrow ⁶F_{9/2}, ⁶F_{7/2}, ⁶F_{5/2} transitions of Sm³⁺ (4*f*⁵, ⁶H_{5/2}) ions. Emission spectrum of the Li₂B₄O₇:Mn,Sm glass exhibits a broad band corresponding to the ⁴T_{1g}(G) \rightarrow ⁶A_{1g}(S) transition of Mn²⁺ ions and three characteristic bands in the yellow-orange-red range belonging to the ⁴G_{5/2} \rightarrow ⁶H_{5/2}, ⁶H_{7/2}, ⁶H_{9/2} transitions of Sm³⁺ ions. Photoluminescence excitation and emission spectra and decay kinetics of Mn²⁺ and Sm³⁺ ions in the Li₂B₄O₇:Mn,Sm glass are interpreted. Energy transfer processes Sm³⁺ \rightarrow Mn²⁺, Mn³⁺ and Mn²⁺ \rightarrow Mn³⁺ in the studied glass are proposed.

Acknowledgments: This work was supported by the Ministry of Education and Science of Ukraine (scientific research project No. 0122U001833).

Padlyak B.V., Kindrat I.I., Adamiv V.T., et al. (2023) MRB, 167, 112432.
Padlyak B.V., Kindrat I.I., Adamiv V.T., et al. (2024) MRB, 175, 112788.

corresponding author: B.Padlyak@if.u.zgora.pl.