Phosphors for the improvement of silicon solar cell efficiency: general considerations and examples with new materials - AgIn₅S₈/ZnS core-shell nanocrystals and Cs₂Ag_xNa_{1-x}Bi_yIn_{1-y}Cl₆ powders

Mengqin Kong¹, Oleksandra Raievska², Oleksandr Stroyuk², Anastasia Barabash¹, Christof Erban³, Andres Osvet^{1#}, <u>Miroslaw Batentschuk^{1#}</u>, Christoph J. Brabec^{1,2}

 ¹ Institute of Materials for Electronics and Energy Technology (i-MEET),
Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
² Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nuremberg for Renewable Energies (HI ERN), 91058 Erlangen, Germany
³ Head of Research & Development, Sunovation Produktion GmbH, Glanzstoffstraße 21, 63820 Elsenfeld I Germany

The maximum efficiency of a single-junction solar cell is calculated from the principle of detailed balance, which reaches 33.7 % with a band gap of 1.4 eV (the Shockley-Queisser limit, s., for instance [1]). For multicrystalline Si with a band gap of 1.1 eV, the maximal value of the power conversion efficiency is estimated to be 29 % [2].

To overcome the efficiency limit, the spectral absorption range of the Si cells can be modified by luminescent materials. The detailed balance calculations done by T. Trupke et al. [3,4] show that the power conversion efficiency of Si solar cells can be improved by using down- and/or up-conversion phosphors, to up to 37 %. Previously, we have analyzed the recent progress in the development of phosphors to utilize the infrared region of solar radiation to improve the solar cell performance with the help of rare-earth (RE) ion-doped up-conversion materials [5]. New trends in RE-ion-doped phosphors are briefly discussed in this paper, among them trivalent RE-ion-doped up-conversion materials for organic solar cell applications.

In addition to the analysis of the given concepts and a review of the best achievements, new experimental results using the concept of UV-down-to-Visible light conversion for the PCE improvement of commercial Si solar cells and modules will be presented. These light-conversion layers are based on highly luminescent AgIn₅S₈/ZnS core-shell nanocrystals and double-perovskite Cs₂Ag_xNa_{1-x} Bi_yIn_{1-y}Cl₆ powders.

- [1] S. Rühle. (2016), Solar Energy, 130, 139–147.
- [2] C. Strümpel, M. McCann et al., (2007), Sol. En. Mater. & Solar Cells, 91, 238 249.
- [3] T. Trupke, M. Green, et al. (2002) J. Appl. Phys. 92 (3) 1668 1677.
- [4] T. Trupke, M. Green, et al. (2002), J. Appl. Phys. 92 (7) 4117 4125.

[5] H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, Ch. Brabec (2011), Adv. Mat. 23, 2675 – 2680.

corresponding authors: miroslaw.batentschuk@fau.de, andres.osvet@fau.de