LPE growth and investigation of optical and photoelectrical properties of Ce³⁺ and Ce³⁺,Mg²⁺ doped Gd₃Sc₂Al₃O₁₂ and Gd_{1.5}Lu_{1.5}Sc₂Al₃O₁₂ single crystalline films

<u>Vitalii Gorbenko^{1#}</u>, Tetiana Zorenko¹, Sandra Witkiewicz-Łukaszek¹, Mikołaj Kaminski², Sebastian Mahlik², Artur Majewski-Napierkowski¹, Yuriy Zorenko¹

¹Faculty of Physics of Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland ²Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, 80-308 Gdansk, Poland

In this work, we present the results of crystallization and investigation of the optical and photoelectrical properties of the single crystalline films (SCFs) of singly Ce³⁺ and doubly Ce³⁺, Mg²⁺ doped Gd₃Sc₂Al₃O₁₂ and Gd_{1.5}Lu_{1.5}Sc₂Al₃O₁₂ garnets. The SCF samples were grown by the liquid phase epitaxy (LPE) method onto Gd₃Ga₅O₁₂ (GGG) and Gd₃Ga_{2.5}Al_{2.5}O₁₂ (GAGG) substrates, respectively, from the super-cooling melt–solution based on the PbO-B₂O₃ flux. The absorption, luminescence, scintillation, and photoelectrical properties of Gd₃Sc₂Al₃O₁₂:Ce and Gd_{1.5}Lu_{1.5}Sc₂Al₃O₁₂:Ce SCFs, as well as Gd₃Sc₂Al₃O₁₂:Ce,Mg and Gd_{1.5}Lu_{1.5}Sc₂Al₃O₁₂:Ce,Mg SCFs with two different Mg concentration were investigated using conventional spectral methods and compared with the properties of the reference YAG:Ce and Gd_{1.5}Lu_{1.5}Al₅O₁₂:Ce SCF samples.

The differences in the optical, scintillation, and photoelectronic properties as well as energy transfer processes from garnet hosts to Ce^{3+} activators in Ce^{3+} and Ce^{3+} , Mg^{2+} doped SCF samples were observed and explained in the context of creation of creation of Ce^{3+} , Ce^{4+} - Mg^{2+} and Ce^{3+} - Mg^{2+} - $2V_0$ centers (V_0 -oxygen vacancy).

Furthermore, the luminescent properties of the mentioned film samples were investigated under excitation by synchrotron radiation at Superlumi station at P66 line at PETRA 3 storage range at DESY, Hamburg, with energy in the 3.7-12.5 eV range at 10 K. Based on this results, the energy levels of Ce³⁺ ions in both garnet host were elucidated with respect band gap extrema, contributing valuable insights into the luminescence behaviour of these materials. The energy creation of excitons bound with Ce³⁺ ions in Gd₃Sc₂Al₃O₁₂:Ce and Gd_{1.5}Lu_{1.5}Sc₂Al₃O₁₂Al₂O₃:Ce hosts was determined to be equal to 6.335 eV and 6.45 eV, respectively.

Acknowledgements: The work was performed in the frame of NCN 2019/33/B/ST3/00406 project and partly in the frame of Regional Excellence Initiative nr RID/SP/0048/2024/01 project. Investigation with synchrotron radiation at DESY were performed in the frame of I-20210147 EC and I-20220864 projects.

corresponding author e-mail: gorbenko@ukw.edu.pl