Optical properties of lead-free Cs₂Na_{0.6}Ag_{0.4}InCl₆:Bi³⁺ double perovskite.

Paulina Kapuśniak^{1#}, Emeric C. C. Kiss¹, Andrzej Suchocki², Yaroslav Zhydachevskyy², Jing Wang³, Chong-Geng Ma⁴, Mikhail G. Brik¹, Piotr Brągiel¹, Michał Piasecki¹

¹Institute of Physics, Jan Dlugosz University in Czestochowa, Poland
²Institute of Physics, Polish Academy of Science, Warsaw, Poland
³State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, China
⁴Chongqing University of Posts and Telecommunications, Chongqing, China

Perovskite materials have emerged as a focal point in materials science owing to their exceptional optical and electronic attributes. Metal-halide double perovskite (MHDPs) are recently booming as promising alternatives for Pb-based halide-perovskite for their non-toxicity and significantly enhanced chemical and thermodynamic stability[1]. Alloyed lead-free double perovskite display intense photoluminescence are environmentally friendly and their devices show long-term operation. Among these perovskites $Cs_2Na_{0.6}Ag_{0.4}InCl_6:Bi^{3+}$ has emerged as a particularly promising candidate. This specific composition offers unique opportunities for exploration, especially in the realm of photovoltaics and LED technology[2]. Luo et al. found that the cation exchange reaction i.e., the partial exchange of Ag⁺ with Na⁺ cations, results into the break of the parity-forbidden transition. Adding Na⁺ alloy and incorporating Bi³⁺ into the perovskite network improves the intense warm white emission of $Cs_2Na_{0.6}Ag_{0.4}InCl_6$ originating from sells-trapped exciting. Investigating the properties and behaviour of $Cs_2Na_{0.6}Ag_{0.4}InCl_6:Bi^{3+}$ is thus essential for advancing our understanding of perovskite materials and unlocking their full potential for practical applications in renewable energy and LED technology[3].

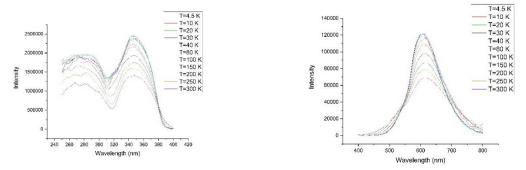


Figure 1. PLE and PL spectra of different temperatures for Cs2Na0.6Ag0.4InCl6:Bi3+.

Acknowledgments: This work was partially supported by Polish National Science Center program SHENG2 of Poland-China cooperation, project number: 2021/40/Q/ST5/00336.

[1] L. Wang, C. Running et al., (2022), AFM, 32(22), 211338.

[2] R.S. Liu, K. Dave et al., (2022), Nanoscale, 14(47), 17735-117742.

[3] S. Xu, B. Chen et al., (2023), SAA, 288, 122181.

corresponding author: paulina.kapusniak@doktorant.ujd.edu.pl