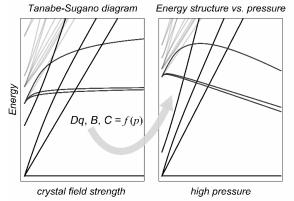
Full energy structure of the Cr³⁺ activator in Cs₂NaInCl₆ double halide perovskite host under pressure

T. Leśniewski^{1,2}, M. Mazurek², N. Górecka², K. Szczodrowski², S. Mahlik²


¹Faculty of Physics, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich 2, 85-090, Bydgoszcz, Poland ²Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdansk, Poland

Applying pressure is one of the methods to alter the spectroscopic properties of optical materials activated with transition metal (TM) ions. The energies of electronic transitions of a d^n TM ion are described by an appropriate Tanabe-Sugano (TS) diagram, and the effect of pressure can be superficially understood as increasing the crystal field strength (*Dq*), i.e. moving right on the TS diagram. The reality is more complex since pressure also affects the mutual electrostatic iteration of the d^n electrons in the TM ion (nephelauxetic effect). This is described by Racah parameters *B* and *C*, which can be obtained experimentally.

In this work I report the effect of pressure on radiative transitions in double halide perovskites $Cs_2NaInCl_6$ activated with Cr^{3+} (d^3), by means of high-pressure photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy. In these materials, a spectacular change between broadband to narrow line emission in the PL spectrum occurs at elevated pressure, resulting from crossover between the 4T_2 and 2E states in the TS diagram.

In this research I am going one step further – utilizing high pressure PLE spectroscopy ton access some of the higher excited states of the system. This allows me to determine all three parameters: crystal field strength Dq, Racah parameters B and C, relevant to the energetic

structure of the system. Finally, based on pressure dependence of the parameters, the pressure evolution of all energy levels of the Cr^{3+} dopant is determined, following the approach described in my previous work [1]. In effect an energy diagram of all the crystal field levels of Cr^{3+} dopant in halide perovskite matrix is constructed, which can be understood as the *true* TS diagram of the system, where abstract parameter *Dq* is replaced by pressure.

[1] Leśniewski T. (2023) Phys. Chem. Chem. Phys., 25, 14449–14462.

corresponding author: tadeusz.lesniewski@ug.edu.pl