Electronic structure of Mn²⁺⁻doped phosphors

Zafari Umar^{1,2}, Oleg Khyzhun^{1,3}, Tomoyuki Yamamoto⁴, Mikhail G. Brik^{1,5}, Mega Novita¹, Michal Piasecki^{1#}

 ¹Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, PL-42200 Czestochowa, Poland
²Center of Innovative Development of Science and New Technologies, National Academy of Sciences of Tajikistan, Dushanbe 734025, Tajikistan
³Frantsevych Institute for Problems of Materials Science, NAS of Ukraine, UA-03142 Kyiv, Ukraine
⁴Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
⁵Center of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Nanocrystalline materials doped with transition metal ions (Mn⁴⁺, Cr³⁺, Mn²⁺, Ni²⁺) are promising materials due to their potential application in many fields. In particular, nanocrystalline materials doped with Mn²⁺ ions have become the object of intensive research due to their practical application as a source of NIR phosphors. In the present work we report on results of a density functional theory study of geometric and electronic structures and optical transition energy of Mn²⁺-doped phosphors using various methods of calculations, in particular GGA-PBE, SCAN, HSEO6. The geometric and electronic structures and optical transitions of the Mn²⁺ ion being in tetrahedral and octahedral environments are analyzed following the technique [1,2]. As an example, Figure 1 presents the results of GGA-PBE calculations of DOS of Mn²⁺-doped KMgF₃.

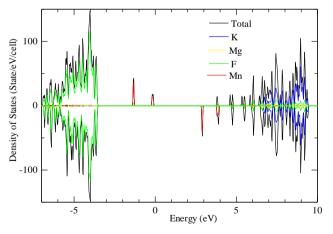


Figure 1. Density of states (DOS) of Mn²⁺ -doped KMgF₃.

Umar Z., Khyzhun O., Yamamoto T., Brągiel P. (2024) Opt. Mater., 149, 115057.
Umar Z., Kurboniyon M.S., et al. (2024) J. Lumin., 266, 120278.