Optical and photoelectrical properties of Ce³⁺ and Mg²⁺-Si⁴⁺ co-doped Gd₃Ga₅O₁₂ and Gd₃Ga₃Al₂O₁₂ single crystalline films

<u>Tetiana Zorenko</u>^{1#}, Vitalii Gorbenko, Sandra Witkiewicz-Łukaszek¹, Artur Majewski-Napierkowski¹, Mikołaj Kaminski², Sebastian Mahlik², Tadeusz Leśniewski², Yuriy Zorenko¹

¹Faculty of Physics of Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz, Poland ²Institute of Experimental Physics of Faculty of Mathematics, Physics and Informatics, University of Gdansk, 80-308 Gdansk, Poland

In this work, we present the results of crystallization and investigation of the optical and photoelectrical properties singly Ce³⁺, doubly Ce³ -Mg²⁺, and triply Ce³⁺-Mg²⁺-Si⁴⁺ doped of Gd₃Ga₅O₁₂ and Gd₃Ga₃Al₂O₁₂ single crystalline films (SCF). These garnets possess a relatively low band gap E_g =6.2-6.4 eV compared to well-known YAG and LuAG garnets with Eg =7.8-8 eV and can be suitable for the creation of photo-sensitive e/h trapping levels in the case of Mg²⁺-Si⁴⁺ donor-acceptor doping.

The SCF samples were grown by the liquid phase epitaxy (LPE) method onto $Gd_3Ga_5O_{12}$ (GGG) and $Gd_3Ga_{2.5}Al_{2.5}O_{12}$ (GAGG) substrates, respectively, from the melt–solution based on the PbO-B₂O₃ flux. The absorption, luminescence, and photoelectrical properties of Ce³⁺ doped and Mg²⁺-Si⁴⁺ codoped SCFs of GGG and GAGG garnets were investigated using conventional spectral methods and compared with the properties of the reference GGG:Ce and GAGG:Ce crystal and ceramic samples. In addition, the influence of the thermal annealing at 1300 °C in air and in 95% N₂ - 5% H₂ reducing atmosphere on the optical and photoelectrical properties of both types of SCFs was investigated.

Moreover, the luminescent properties of selected SCF samples were studied at 10 K under excitation by synchrotron radiation (SR) with energy in the 3.5-12.0 eV range at P66 Superlumi station at PETRA 3 storage range at DESY, Germany. Based on these results, the energy structure of different Ce³⁺ related centers in Mg²⁺-Si⁴⁺ codoped SCF samples were compared with respect to the band structure of these garnets.

The results of this complex study are helpful for the development of luminescent materials for composite photovoltaic screens as well as for the creation of the composite thermoluminescent and optically-stimulated detectors based on the epitaxial structures of Ce^{3+} doped and $Mg^{2+}-Si^{4+}$ codoped garnets, producing by LPE growth method.

Acknowledgements: The work was performed in the frame of NCN Poland no 2019/33/B/ST3/00406 project and partly in the frame of MNSW Poland Regional Excellence Initiative nr RID/SP/0048/2024/01 project. An investigation with SR at Superlumi station at DESY was performed in the frame of I-20210147 EC, I-20220044, and I-20220864 projects.

corresponding author: tzorenko@ukw.edu.pl